

Electronic Monitoring in the Northeast Region

A summary of EM programs in the Northeast

Nichole Rossi, NOAA Fisheries,
Northeast Fisheries Science Center
Fisheries Sampling Branch
February 12, 2020

Electronic Monitoring of Mid-Water Herring Trawl Fishery

- Study to determine utility of EM in fishery (2016-2018)
 - Conclusion: EM and Portside Sampling (PS) suitable tool to monitor catch retention on MWT vessels targeting herring
- With the implementation of IFM Omnibus Amendment (April 2020) midwater trawl vessels may choose an ASM or EM & Portside as their monitoring option

Saltwater Inc.

- Goal: EM used to confirm catch retention and verify compliance with slippage restrictions at sea, portside sampling will supply species composition data for quota monitoring
- Service provider: Saltwater Inc.
- Application: EM 100% coverage, provider completes primary review at 50% of total trips, Portside sampling – 50% selection
- Exempted Fishery Permit (EFP) will be issued to administer EM in this fishery for the first two years of the IFM

EM in Groundfish Sectors

At-sea monitoring requirements for sector vessels

"Electronic monitoring may be used in place of actual observers if the technology is deemed sufficient by NMFS for a specific trip type based on gear type and area fished, in a manner consistent with the Administrative Procedure Act."

Regional EM programs

Goal: To develop EM for use as an alternative tool to meet sector monitoring

requirements

Current programs:

Audit-model (discard estimation)

Maximized retention (compliance)

Groundfish Amendment 23

Goal: To improve the reliability and accountability of catch reporting

EM in Groundfish Sectors: Audit-Model

Number of vessels: 20

Gear type: Trawl (5), Longline (3), Gillnet (5), Jig (7)

Vessel size: 31' to 63'

Ports: RI, MA, NH, ME

Goal: Use cameras to validate discards reported by

fishermen in vessel trip report

Challenges: Lack of high-volume vessels; data lags; incorporating new data sources into existing system

Science. Education. Community.

EM in Groundfish Sectors: Maximized Retention

Number of vessels: 3

Gear type: Trawl (3)

Vessel size: 44' to 68'

Ports: RI, MA, ME

Goal: Use cameras to verify that fishermen retain all catch, including discards, and collect catch data on shore via dockside monitoring program

Challenges: Lack of high-volume vessels; minimum size regulations; new dealer codes; dockside monitoring program

'Primary' Review

- Conducted by the service provider
- Video review rate
 determined by NMFS
 (50% random trip review) VS.
- Data uploaded to NMFS and used for quota monitoring
- Used to validate eVTR's

'Secondary' Review

- Conducted by NMFS staff
- Used as a QA/QC of the primary review
- Can be used to identify errors in primary review
- Video "access"
- Random trip selection
- Feedback directed to service provider

THE RESIDENCE DESCRIPTION OF THE PROPERTY OF T

Industry Costs for an EM Program

- Currently video review is the largest component of EM program costs
- Much of this involves simple species identification and length measurement
- Efficiencies are needed in video review processes
- Cost Drivers:
 - Level of review rate
 - Weight estimation
 - Audit tolerances (eVTR and EM report)

Chart 1: % of Annual Costs by Budget Category (Year 3 of Program)

https://eminformation.com/wp-content/uploads/2019/04/TNC-EM-Cost-Assessment-Report-Submission-to-NEFMC-4_10_19.clean_.pdf

Cap Log Group LLC & The Nature Conservancy

Other Regional EM Initiatives

- EM in the For-Hire Groundfish Fishery (The Nature Conservancy)
 Goal: Pilot the use of EM to validate catch reported on the captain's eVTR
- 2. EM in Northern Gulf of Maine Scallop Fishery (Maine Coast Fishermen's Association)

 Goal: Pilot the use of EM to monitor fleet and collect fishery data; develop machine learning to increase program cost-effectiveness
- 3. Machine Learning on the NOAA R/V Bigelow (Northeast Fisheries Science Center)

 Goal: Build a library of images during the bottom trawl survey; use image to develop fish identification algorithms for 3rd party video review software
- 4. Unifying EM and VTR Collection Systems (Greater Atlantic Regional Fisheries Office) Goal: Conceptualize system that will link EM/VTR data sources at the point of collection rather than during post-processing. Initiate haul-level functionality in eVTR portal and add API hooks to EM sensor data for haul event identification

What's Next for EM in the Northeast?

- Testing EM with high discard volume vessels
- Improving EM infrastructure
- Singular shared data system for management & science
- Incorporating Machine Learning initiatives
- Operational specifications and requirements that can be utilized in multiple fisheries and gear types

Incorporating third-party EM data into quota monitoring

Brant McAfee

Analysis and Program Support Division Greater Atlantic Regional Fisheries Office

Audit-Model Design

Data Collection

- EM data collected on groundfish discards only
- Full trip reviews (100% of hauls)
- Reviewer records species and length for each animal that is converted to a weight

Discard Estimation:

Relies on haul-level matching of EM and VTR logbook to construct complete trip and compare discards between sources

Trip discard source varies depending on EM-VTR comparison:

- Human Observer
- O VTR
- O EM
- Discard rate

EM Data Validation

Within species audit thresholds?

EM and VTR data quality must surpass several hurdles before it can be used...

Audit Thresholds

- Absolute difference between EM and VTR must be less than weight tolerance
- Three thresholds based on species risk tolerance
 - O HIGH
 - O MEDIUM
 - o LOW
- Result from simulation of fishing year 2016-2017
 EM data with targeted pass rate of 80%

Species	Weight Tolerance (lbs)		
Cod	25		
Haddock	100		
Halibut	50		
Ocean pout	50		
Plaice	100		
Pollock	100		
Redfish	50		
White hake	50		
Windowpane flounder	50		
Winter flounder	50		
Witch flounder	50		
Wolffish	50		
Yellowtail flounder	50		

Audit Selection

Random subset of trips **selected** for review

• FY2018: 100%

• FY2019: 50%

Capable of modifying review rate

- Performance based
- Fishing location
- Landings
- Gear
- Behavior

EM Data Transmission: Vendor -> Agency

Communication

Automated <u>trip-level summary report</u> provides weekly data quality feedback to EM participants

 Improve data quality and promotes transparency

Weekly **selected trip list**

- Tracks all known trips in system
- Identifying attributes (permit, date, status)

PERMIT	TRIP_ID	DATE_TRIP	VTR_EXIST	EM_DATA_EXIST	AUDIT_SELECTED
123456	12345619121406	14-Dec-19	1	1	1
123456	12345619122905	29-Dec-19	1	0	1
123456	12345620020104	1-Feb-20	0	0	0

